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The stationary instabilities of flow patterns associated with Rayleigh-BCnard 
convection in a 3 x 1 x 9 rectangular container are extensively investigated by numerical 
simulation. Two types of spatial instabilities of the base convection rolls are predicted 
in the transition from steady two-dimensional flow to the unsteady oscillatory regime; 
these instabilities depend on the Prandtl number. For Pr = 0.71 the soft-roll instability 
is found at moderate Rayleigh number Ra. The results obtained confirm the 
importance of this flow pattern as a continuous mechanism for steady transition from 
one wavenumber to another. For Pr = 15, cross-roll instability is obtained, which at 
larger Ra leads to bimodal conuection. For this value of Pr the soft-roll flow pattern is 
found at intermediate Ra. At higher Ra a new flow structure in which cross-rolls are 
superimposed on the soft roll is obtained. The effects of the various flow structures on 
the heat transfer are given. A quantitative comparison with previous experimental and 
theoretical findings is also presented and discussed. 

1. Introduction 
Natural convection in a layer heated from below has been extensively studied during 

the past century, beginning with the experiments of BCnard (1900a, b) and the 
theoretical analysis of Rayleigh (1916). 

Two different aspects have contributed to the interest in this problem: first, there are 
many practical applications such as thermal comfort, crystal growth and solar 
collectors, which depend on this type of convection; the second aspect is theoretical 
since a variety of different flow structures may occur, in this very simple geometry, in 
the transition from steady laminar to turbulent flows. 

A large scientific effort has been devoted to the analysis of the stability and behaviour 
of fluid layers of infinite horizontal extent. The dependence of the flow configuration 
on Prandtl (Pr)  and Rayleigh numbers (Ra) and the shape of the stability region in 
the (Ra, wavenumber)-plane is widely known and described in both theoretical (Busse 
1967a) and experimental papers (Busse & Whitehead 1971). 

Studies of infinite domains also play an important role in the prediction of flow in 
bounded domains, particularly at values of Ra near the first critical value Ra,. It has 
been shown (Davies 1967; Davies-Jones 1970; Stork & Miiller 1972) that the value of 
Ra, itself, which is 1708 and corresponds to the onset of cellular convection, is 
insensitive to aspect ratio (for aspect ratios greater than 2) and independent of Pr. In 
the supercritical-Ra region however, the structures in bounded domains are strongly 
affected by the geometry of the box and thermal properties of the sidewalls (Kessler 
1987) as well as by the physical characteristics of the fluid. In these regions of Ra the 
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infinite analysis can only be used for qualitative comparisons and preliminary estimates 
of the critical values of the governing parameters for transition between flow regimes. 

In the last decade there has been renewed interest in the problem of spatial and 
temporal instabilities of fully developed three-dimensional flow structures (Kolodner 
et al. 1986; Kessler 1987; Kirchartz & Oertel 1988). Of particular interest is the complex 
scenario which is possible in the supercritical regime due to the important role played 
by Pr. This is analogous to the behaviour that occurs in unbounded domains as 
observed experimentally by Krishnamurti (1970). 

We have thus undertaken a numerical study of Rayleigh-Benard convection in a 
bounded domain in relation to the slope and characteristics of the stability regions of 
the different flow structures, selecting two Pr values (0.71 and 15), which are 
significantly different. 

Let us first consider Pr = 0.71 (air at 15 "C). 
(i) From the stability diagram (figure 2 of Busse & Clever 1979) for an infinite layer, 

it is seen that there is a very thin stability region (maximum Ra,, for the stable 
configuration is approximately 6000), bounded by the skewed-varicose instability 
(which corresponds to a periodic thickening and thinning of the convection rolls) for 
a wavenumber a larger than 2.3 and by the oscillatory instability for a less than 2.3. 
(The wavenumber is defined as a = 21~/1, where 1 is the wavelength.) This is contrasted 
by the results of Kessler (1987) who solved the Boussinesq equations using a Galerkin 
method and obtained Ra,, = 33400 in a 4 x  2 x 1 box (a = 2.35, n (number of 
rolls) = 3) and by those of Kirchartz & Oertel (1988), who, using a finite-difference 
method based on the Dufort-Frankel scheme in the same box, obtained Ra,, = 34000. 
These values are approximately six times larger than expected from the theoretical 
study of an infinite layer (Busse & Clever 1979). This has been attributed to sidewall 
effects (Motsay, Anderson & Behringer 1988). Maurer & Libchaber (1979) experi- 
mentally found Ra,, = 23 500 for the same Pr, in a 3.5 x 1.9 x 1 box. 

(ii) The experimental investigations as well as the theoretical studies of Busse & 
Clever (1979) in an unbounded domain have shown that the skewed varicose instability 
is a basic mechanism for the quasi-steady modification of the wavelength as a function 
of Ra. On the other hand, in limited domains the modification of the wavenumber is 
driven by a different type of spatial instability, which has become known as a soft roll. 
This has been experimentally investigated in a 10 x 5 x 1 box by Kolodner et al. (1986). 
They found a T-shaped-roll which can be squeezed or stretched, resulting in a 
modification of the wavenumber required by the stability boundary. None of the 
previous available numerical results have shown a spatial instability of the skewed- 
varicose or soft-roll type. In particular Kirchartz & Oertel (1988) state that 'the 
modification of the wavelength, which develops in discrete steps in the container as a 
result of the finite number of rolls, cannot be satisfactorily described by the numerical 
simulation '. 

For intermediate and high Pr (> 10) Busse & Whitehead (1971) observed 
experimentally, and Busse (1967a) and Frick, Busse & Clever (1983) studied 
theoretically, the cross-roll instability leading to a transition to bimodal convection. 
There is experimental evidence that this kind of instability also occurs in limited 
domains (Kolodner et al. 1986). However, to date none of the numerical studies 
provided a detailed investigation of the cross-roll flow configuration in enclosures of 
limited dimensions. 

In the present work a systematic numerical study is presented of the three- 
dimensional flow and thermal fields in a 3 x 1 x 9 box (1, = L / H ,  1, = 1,1, = W/H,  see 
figure 1) heated from below and with adiabatic lateral walls. Like Kolodner et al. 
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(1986), we were motivated in the choice of these aspect ratios by the desire to have a 
container sufficiently large to permit the observation of the onset of spatial flow 
patterns but sufficiently small to inhibit slow wandering of the rolls. 

The numerical code used in this work is based on the vorticity-velocity formulation 
of the Navier-Stokes equations (Guj & Stella 1988, 1993) applied to a staggered 
uniform grid, which for the full domain typically contains 30 x 20 x 90 mesh points. 

The computed results confirm some interesting types of behaviour of the confined 
flows as discussed above, particularly : (i) multiplicity of solutions and flow structures 
for a given Ra; (ii) the existence of the soft-roll instability as a mechanism for the 
steady transition from one wavenumber to another at low Pr;  (iii) qualitative 
agreement in the (Ra, a)-plane between the theoretical prediction of skewed-varicose 
instability and computed results of the soft roll - this seems to confirm that these 
structures are two forms of the same instability; (iv) the occurrence of the cross-roll 
instability leading to bimodal convection for intermediate Pr and high Ra. 

2. Mathematical formulation 
The vorticity-velocity form of the non-dimensional equations governing natural 

convection in a Newtonian fluid, assuming the Boussinesq approximation to be valid, 
are 

+ - V x ( ( o x u ) = V 2 m - R a V x  1 am 1 _- 
Pr at  Pr 

VZU = --v x 0, 

ae - + ( u . v ) e  = v e ,  
at 

(2) 

(3) 

in which 8 is the non-dimensional temperature = (T-  q)/AT, and Ra = gpATp/Kv 
and Pr = v /K are the Rayleigh and Prandtl numbers respectively, where g is the 
modulus of the gravitational acceleration, p is the coefficient of thermal expansion, H 
and AT are the distance and temperature difference between the hot and cold surfaces 
respectively, K is the thermal diffusivity and v is the kinematic viscosity. 

o = v x u .  (4) 
The vorticity o is defined as 

3. Boundary conditions 
All boundaries of the box are assumed to be impermeable and at rest, u = 0. The 

boundary conditions for vorticity are obtained directly from the definition of vorticity, 
(4). 

The temperature boundary conditions are 

XI = 0, 1, - = 0, an x3 = 0, 1, 

on the adiabatic walls, where n is the normal direction and 
e =  1, x, = o ,  
e=o ,  x, = I ,  

on the isothermal horizontal walls. Figure 1 shows the boundary conditions, locations 
and directions of the axes. 
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Hot boundary 

0 Cold boundary 

0 Adiabatic lateral walls 
FIGURE 1 .  Sketch of the problem domain and boundary conditions. (Note that all 

boundaries are impermeable and non-slip.) 

4. Numerical procedure 
4.1. Finite-diflerence scheme and convergence criterion 

The governing equations (1)-(3) were discretized by a finite-difference approximation 
(FDA) on a regular Cartesian mesh with a second-order-accurate scheme for both time 
and space derivatives. Second-order accuracy in space is achieved by central differences 
for both first and second derivatives and second-order accuracy in time is obtained by 
adopting the Samarskii-Andreyev scalar-type alternating direction implicit (ADI) 
scheme (Samarskii & Andreyev 1963). This scalar-type AD1 scheme permits 
appropriate timescales to be chosen for the different equations to speed up the 
convergence of the numerical procedure when steady-state solutions are sought 
(Mallinson & de Vahl Davis 1973). 

The convergence criterion was based on the field-averaged dynamical residual which 
had to be less than lo-' on (1)-(3); then the quality of convergence at steady state was 
checked by the calculation of the maximum absolute error (static residuals) of the 
steady-state form of (1)-(3) as well as on the equations that are only implicitly solved 
in the present formulation, viz, vorticity definition (4) and solenoidality of velocity u 
and vorticity w fields. These residuals were required to be less than lop4, otherwise the 
computation was forced to continue. 

4.2. Conservation properties and variables location 
The staggering of the variable location was chosen not only to obtain the maximum 
accuracy of the discretized derivatives but also to ensure the discrete conservation of 
mass, vorticity and thermal energy. By analogy with the two-dimensional case (Guj & 
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Stella 1988), it is possible to obtain mass conservation, to round-off error, if the 
velocity component ui is located at the middle of the face of the computational cell 
which is normal to xi .  Similarly, conservation of vorticity is achieved if each vorticity 
component is located at the midpoint of the edge of the cell parallel to the 
corresponding axis. 

Some additional remarks are necessary to explain the form of the advective term in 
(1). First, we demonstrate that (1) implicitly enforces the solenoidality of vorticity o at 
continuum level. Denoting the divergence of vorticity V - o  by D and taking the 
divergence of (l), we obtain a diffusion equation for the divergence of the vorticity: 

It follows that the solenoidality of the vorticity field is ensured, provided that D = 0 on 
all boundaries. Secondly it can be demonstrated (Guj & Stella 1993) by discrete 
manipulation of (5 )  that the solenoidality of the vorticity field is also ensured in the 
discrete form provided that the variables are staggered as mentioned above, and that 
in obtaining the FDA for the advective terms V x (o x u) all required averaging is 
performed on the product (o x u) rather than on the individual values of o and u. 

Finally, for energy conservation, the temperature has been located at the centre of 
the cell in analogy with the work of Stella & Guj (1989). Here the convective term in 
(3) has been discretized in such a way that the quantity j,(Ou- V6)sn ds (s is the surface 
of a cell) vanishes. Consequently, the variable location and discretization form give the 
best conservation of energy, so that the mean Nusselt number on a horizontal section 
of the fluid domain, defined as 

NU = - (8u-V6)-ndS X 
is constant and equal to Nu on the bottom and top walls. 

4.3. Computational mesh and accuracy 
The box is discretized using a uniform grid which typically contains 30 x 20 x 90 mesh 
points. A uniform grid has been preferred for the following reasons: (i) it guarantees 
second-order accuracy, which is important in reducing numerical viscosity and 
dissipation, both of which can adversely modify the transition mechanism between the 
various flow patterns in stability studies; (ii) due to the multiple-cell structure the high- 
gradient regions (of velocity and temperature) are located not only near the walls, but 
also in the bulk of the fluid in positions determined by the cellular structure itself which 
is not known apriori. It should be noted that in order to reduce the CPU time and 
storage requirements symmetric boundary conditions have been used where possible, 
to reduce the computational domain to one half or one quarter of the total region of 
interest. The correctness of the numerical solutions obtained using such reduced 
computational domains was validated by comparing a number of such solutions with 
solutions for the entire domain. 

The capability of the method in computing the complex three-dimensional flow 
structures of the Rayleigh-BCnard problem is demonstrated by comparison with the 
experimental results of Kolodner et al. (1986). The details of mesh sensitivity and 
accuracy are deferred to $5.2, because knowledge is required of the complex flow 
structures present in this type of flow. Various preliminary accuracy tests of the method 

13-2 
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were conducted by comparisons with vorticity-vector potential formulations (Mal- 
linson & de Vahl Davies 1977) for the standard window cavity problem and are 
presented in Stella et al. (1988). 

4.4. Initial condition 
As observed by Landau & Lifshitz (1975, p. 102) every solution of the equation of 
motion which is stable can also occur in nature, irrespective of the solution method 
used. Hence, for fixed physical boundary conditions, the initial condition plays the only 
important role in starting the solution from a point which is within the attraction basin 
of the numerical procedure for a certain structure. In our experience this can be done 
by imposing as a starting solution a vorticity distribution approximately similar to the 
one which is expected as the final one. 

The following different strategies have been used : (i) an initial inclination of the box 
is used to induce a vorticity distribution in the desired direction (see e.g. Kirchartz & 
Oertel 1988); (ii) a change in aspect ratio is used to control the initial number of rolls 
(i.e. wavenumber), since the smaller the aspect ratio the smaller the number of rolls 
because for Ra just above Ra, the natural structure is the one with parallel rolls of 
nearly square section; (iii) starting from a solution at different Ra or Pr values; (iv) low 
Ra starting from rest, where most of the quasi-two-dimensional natural structures 
(with near square cross-section) have been obtained. The steady-state solution is 
reached after the enforcement of the prescribed geometry and physical parameters. 

4.5. Evaluation of Ra,, 
The critical Ra for transition to oscillatory solutions (Ra,,) is evaluated by incrementing 
the value of Ra until an unsteady solution is found. In the neighbourhood of Ra,, the 
amplitude of the oscillatory solution is proportional to (Ra- Ra,,); (Joseph 1976), 
resulting in a gradual transition from a steady to a finite-amplitude oscillatory region. 
For this reason all the numerical solutions, as well as experimental observations, are 
affected by an overestimation of Ra,,, proportional to the square of the uncertainty of 
the observed field variables. In this work, for solutions which we considered to be 
numerically unsteady, no noticeable change was found in the flow structure and the 
qualitative variations of the field variables evaluated in the complete fluid domain are 
very small. We believe it is for this reason that some other numerical or experimental 
studies have overestimated values for Ra,,. 

Although a systematic study of Ra,, has not been fully conducted, due also to the 
enormous computational requirements in terms of both computer time and memory 
for three-dimensional mesh refinements, we are able to give (see $5) some indicative 
values of the critical Ra,,. 

5. Results 
In the present work we have examined qualitatively and quantitatively the 

flow and thermal fields in a 3.0 x 1.0 x 9.0 box in the steady supercritical regime 
Ra, < Ra < Ra,, for Pr = 0.71 and 15. 

Different geometrical and physical situations are also considered and briefly 
discussed in $5.2 to test the accuracy of the proposed numerical model and to 
investigate some interesting results which have appeared in the literature (Kolodner 
et al. 1986; Kessler 1987). 
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5.1. General discussion 
As discussed by many authors (Davies 1967; Davies-Jones 1970; Stork & Muller 1972) 
the value of Ra, = 1708, corresponding to the onset of cellular convection, is 
independent of Pr and weakly sensitive to aspect ratio (for aspect ratio greater than 2). 

The steady supercritical regime, which appears at increasing Ra (Ra, < Ra c Ra,,), 
can be subdivided into two flow regimes: 

(i) Quasi-two-dimensional motion in the form of periodic nearly rectilinear rolls, 
comprising either : 8 transverse rolls (8T), which are orthogonal to the longest sidewall 
of the box, with a = 2.79; 6 transverse rolls (6T) with a = 2.09; 3 longitudinal rolls 
(3L), which are parallel to the longest sidewall of the box with u = 3.14; or 2 
longitudinal rolls (2L) with a = 2.09. 

(ii) Fully three-dimensional flow caused by : bimodal convection, comprising of a 
base flow superimposed with cross-rolls of approximately the same strength as the base 
flow (cross-roll instability); or distortion of the original roll in soft form during the 
quasi-steady transition from one configuration to another with a smaller wavenumber 
(skewed-varicose instability). 

For the supercritical regime, it has been demonstrated theoretically by Busse & 
Clever (1979) and shown experimentally (e.g. Krishnamurti 1970, figure 9) that the 
flow structure, the type of spatial instability and the transition to periodic motion 
strongly depends on Pr. For this reason we have analysed separately cases at a low 
(Pr = 0.71) and intermediate Pr (Pr = 15). 

In discussing the numerical results obtained in the present analysis we refer to the 
stability studies and diagrams for an infinite layer of fluid (Busse 1967b; Clever & 
Busse 1974; Busse & Clever 1979; Kolodner et al. 1986; Bolton, Busse & Clever 1986). 
In these studies the base steady two-dimensional solution was obtained by expanding 
the unknowns in terms of eigenfunctions. The stability problem was investigated by 
superimposing infinitesimal disturbances of arbitrary three-dimensional spatial 
dependence to the base solution. By this method the stability diagrams of figure 2 of 
Busse & Clever (1979) and figure 2 of Kolodner et al. (1986)t were obtained. We have 
superimposed our results on these diagrams in the plane (RalRa,, a) for Pr = 0.71 and 
15 (figures 2 and 3 respectively). It should be noted that the zig-zag instability cannot 
appear in the case of limited domains because of the straightening effect of the lateral 
walls (Busse & Whitehead 1971). On the other hand, a form of skewed-varicose 
instability, which corresponds to a periodic thickening and thinning of the convection 
rolls, might also be expected to exist in limited domains, since it is an instability of this 
type which results in the steady transition from a higher to a more stable lower 
wavenumber flow structure. 

5.2. Preliminary study 
Before considering in detail the 3.0 x 1.0 x 9.0 geometry, a preliminary study is 
presented to (i) validate the numerical method by comparison with experimental results 
and by a mesh sensitivity analysis, and (ii) further discuss the results of Kolodner et al. 
(1986) and Kessler (1987). 

5.2.1. Validation of the numerical method 
Two test cases have been chosen in order to justify the grid adopted in the final 

computations and to validate the results of the present numerical experiments with 
previous experimental investigations : 

t As noted by Kolodner et al. (1986), the stability boundaries presented in their figure are 
interpolated and extrapolated from the calculations of Busse & Clever (1979), Busse (1978), and 
Bolton, Busse & Clever (1983). 
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Wavenumber, a 
FIGURE 2. Present numerical results, for Pr = 0.71 superimposed on the stability diagram of Busse & 
Clever (1979), for an infinite domain. For the soft roll a is computed using the dimension of the 
central transverse roll. The soft-roll results (@) follow the skewed-varicose stability line. The 3L 
configuration (0) seems more stable than the prediction for an infinite domain. The 8T configuration 
is denoted 0. 

1.5 2.0 2.5 3.0 3.5 
Wavenumber, a 

FIGURE 3. Present numerical results, for Pr = 15, superimposed on the stability diagram (Kolodner 
et a[. 1986) in the case of infinite domain. The cross-roll structures (filled symbols) are found at 
RalRa, whose difference from the theoretical prediction is less than 15 YO, which is of the order of the 
uncertainty stated by Kolodner et al. (1986). 0, 8T configuration; A, 6T; 0, 3L; V, 2L. 
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Mesh HI H3 LJ Nu 
type DOF Structure (error %) (error YO) (error YO) (error YO) 
A 51408 SCR 0.520 1.085 76.77 2.850 

(2.8) (3.9) (0.5) (6.9) 
B 108192 SCR 0.536 1.121 77.07 2.756 

(0.3) (0.7) (0.1) (3.4) 

(0.2) (0.3) (0.1) (1.6) 

(0.3) (0.2) (0.2) (0.6) 

C 219240 SCR 0.536 1.126 77.21 2.708 

D 432432 SCR 0.536 1.131 77.03 2.680 

E 844928 SCR 0.535 1.129 77.16 2.665 
(-1 (-) (-1 (-) 

TABLE 1.  Mesh sensitivity to degrees of freedom. Mesh types are: A (12 x 17 x 36), B (16 x 21 x 46), 
C (20 x 27 x 58), D (26 x 33 x 72), E (32 x 41 x 92). HI and H3 are the characteristic lengths of the 
transverse central and soft roll respectively. VSM is the maximum vertical velocity and Nu is the 
Nusselt number on a horizontal plane. Mesh B is the standard grid used for the computations on a 
quarter of the domain. 

(i) The standard 3 x 1 x 9 box, for Pr = 15 and Ra = 17000 - selected for the mesh 
sensitivity analysis because at these parameter values the most complex flow structures, 
namely soft cross-rolls (SCR) are found. The mesh on a quarter of the domain is varied 
from 12 x 17 x 36 to 32 x 41 x 92 corresponding to a number of degree of freedom 
(DOF) from 51 408 to 844928. The results of the mesh sensitivity analyses are presented 
in table 1, in terms of flow structures, the maximum vertical velocity and the global Nu 
on a horizontal plane. The structures obtained with the coarsest and finest meshes 
indicate that there is no perceptible modification for a change in the DOF of more than 
an order of magnitude. Further the dimension of the central transverse roll (H,) and 
of the soft roll (HI) ,  shown in table 1 and defined in figure 4(b), changes by around 1 YO 
between the standard grid used for the computations (108192 DOF) and the finest 
mesh. 

(ii) A 4.4 x 1 x 9.3 box which has the same geometry as container A of Kolodner 
et al. (1986), for Pr = 5.5 and a wide range of Ra. This was chosen so as to be able to 
quantitative compare, in terms of Nu, the results of Kolodner et al. (1986) with the 
present results. The numerically determined Nu numbers for the 8T and 10T 
configurations are superimposed on those of figure 10 of Kolodner et al. (1986) in 
figure 5,  showing an error less than 4% for the Ra considered. 

5.2.2. Some remarks concerning existing results 
In 01 we focused our attention on two aspects which required further discussion, 

namely (i) the capability of numerical codes to satisfactory simulate soft-roll structures, 
and (ii) Rarr in small-aspect-ratio boxes. We have therefore selected and studied the 
following two cases for this discussion. 

(i) A 5.3 x 1 x 10.6 box, which has the same geometry as container B of Kolodner 
et al. (1986), for Pr = 18 and Ra/Ra, = 2.7. This Ra is in the lower region of Ra in 
which Kolodner et al. (1986) found the soft-end-roll configuration. In figure 6 ( 4  a 
contour plot of vertical velocities is shown at Ra/Ra, = 2.7. The soft-roll configuration 
is clearly evident. In figure 6(c) the same result is presented in the form of a numerical 
shadowgraph, obtained by the vertical integration of the two-dimensional Laplacian 
of the temperature field on the horizontal planes, and is compared with the 
shadowgraph obtained by Kolodner et al. (1986), see figure 6(b) .  The agreement in flow 
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FIGURE 4. Contour plots of vertical velocity in the plane x2 = 0.5 for soft-roll patterns at Pr = 15: 
variation of the shape of the soft rolls from Ra = 12000 (a) to 17000 (b). The simultaneous presence 
of the cross-roll may be seen at Ru = 17000. Continuous lines represent positive velocities and dashed 
lines represent negative velocities. (symmetry is assumed only for plotting.) 

structure is very good. This result confirms the capability of the present numerical 
method to find, with good accuracy, complex flow structures and validates, from the 
numerical point of view, the existence and steadiness of the soft rolls found by 
Kolodner et al. (1986) in experiments where the physical parameters could not be 
controlled as well as in the numerical simulation. 

(ii) The small-aspect-ratio box 2 x 1 x 4 for Pr = 0.71 which has the same geometry 
as investigated by Kessler (1987). For a = 2.35 we have found a steady solution for 
Ra = 25 000 and a weakly oscillatory solution for Ra = 27 500, which is lower than 
33400 found by Kessler (1987) for the same flow configuration. However, it should be 
noted that Kessler (1987) determines Ra,, only by checking the amplification or 
damping of field-variable oscillations. The value estimated in the present research is in 
reasonable agreement with Ra,, (= 23 500), for a = 1.79, found experimentally by 
Maurer & Libchaber (1979) in a box 1.9 x 1 x 3.5 at the same Pr. The present results 
confirm the strong effect of sidewalls as observed by Motsay et al. (1988). 
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- 10T-Theoretical 
A 10T-Experimental 

8 10T-Numerical 
.... . 8T-Theoretical 

X 8T-Experimental 
+- 8T-Numerical 

0 2 4 6 8 10 12 

RalRal 

FIGURE 5. Comparison of Nu between the present numerical results and the experiments of Kolodner 
et al. (1986) in a 4.4 x 1 x 9.3 container at Pr = 18 for the 8T and 1OT configurations. The theoretical 
values for an infinite domain (Clever C Busse 1974) at the same Pr are also shown. 

5 . 3 .  Prandtl number = 0.71 
5.3.1 Quasi-two-dimensional conjigurations 

Let us first consider the base quasi-two-dimensional pattern. Owing to the small size 
of the stability region (figure 2), in the case of Pr = 0.71 only 8T and 3L configurations 
have been found to be stable. The general discussion on the base quasi-two- 
dimensional solutions is deferred to the next section, since Pr = 15 offers a larger 
stability region and a more extensive picture of the base structures can be presented. 
Nevertheless, some preliminary comments, which refer only to Pr = 0.71 are necessary. 

It should be noted that although stable solutions for a = 2.09 (6T and 2L) are 
obtained for Pr = 15, they cannot be obtained for Pr = 0.71. This is probably due to 
the smaller dimension of the stability region for the latter (figures 2 and 3) combined 
with the wall effect, which affects the vorticity components perpendicular to the axis of 
the main rolls. To verify this hypothesis, we have approximated the flow in a box of 
infinite dimension in the direction of the axis of the 6T rolls (a x 1 x 9), by a very long 
(40 x 1 x 9) three-dimensional box with slip conditions on the endwalls. The resulting 
6T structure is stable in accordance with figure 2. This structure remained stable as the 
aspect ratio was slowly decreased to (14 x 1 x 9). Below this aspect ratio no stable 
solution could be found, and it is believed that the endwall effect reduces the stability 
for the transition to the oscillatory solutions. 

5.3.2. Soft roll 
It may be seen from figure 2 that an increase in Ra leads to two types of instability. 

The first is a direct transition to oscillatory flows for a < 2.2. This flow will not be 
discussed in the present paper since we are only interested in steady solutions. The 
second is the skew-varicose instability for a > 2.2, which in bounded domains occurs 
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FIGURE 6. Comparison with experiments of Kolodner et ul. (1986) in a 5.3 x 1 x 10.6 container at 
Ru/Ru, = 2.7 and Pr = 18: (a) contour plot of vertical velocity in the plane x2 = 0.5, (b) 
shadowgraph image obtained by Kolodner et ul. (1986), (c) numerical simulation of the shadowgraph 
effect. 
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1 
FIGURE 7. Contour plots of vertical velocity in the plane x2 = 0.5 for soft-roll patterns at Pr = 0.71 : 
variation of the shape of the soft rolls for 5500 2 Ra 3 3000. Continuous lines represent positive 
velocities and dashed lines represent negative velocities. (Computations have been carried out on the 
full domain. symmetry is assumed only for plotting.) (a) Ru = 5500, (b) Ru = 4500, (c) Ru = 3000. 

in the form of a soft roll (Kolodner et al. 1986). This last instability, in an infinite 
domain, corresponds to a spatially periodic thickening and thinning of the convection 
rolls, resulting in a tendency to eliminate the large-wavenumber rolls, leaving the low- 
wavenumber rolls (Busse & Clever 1979). The skewed-varicose instability cannot occur 
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FIGURE 8. Soft-roll configuration: particle path (Pr = 0.71 and Ra = 5000). (Computations have 
been carried out on the full domain. symmetry is assumed only for plotting.) 

Transverse Longitudinal 

Configuration 8T 6T 3L 2L 
Wavenumber of the base flow, a 2.79 2.09 3.14 2.09 
Ra ( x  

Infinite domain (Kolodner et al. 1986) 32 19 37 19 

Wavenumber of cross-rolls, a, 6.28 4.18 2.79 4.88 
Occurring at Ra ( x  40 20 - 30 2 25 

Wavenumber ratio, a,/a 2.25 2.00 0.89 2.33 
Ra ( x  

for transition to cross-roll: 

20 - 25 Present analysis 32-40 15-20 - 

for transition to oscillatory 
solutions : 
Present analysis > 40 > 30 > 40 > 25 

TABLE 2. Critical Ra for the transition to cross-roll and oscillatory solutions, wavenumbers 
associated with the base and cross-rolls 

in the form discussed by Busse & Clever (1979) in boxes of limited dimensions, because 
of the presence of lateral walls, as was observed also by Busse & Whitehead (1971). 

A completely different form of this instability occurs in limited domain for the 
transition from large to lower wavenumbers. This instability was found experimentally 
for low and intermediate Pr (Pr < 20) by Kolodner et al. (1986) and was called soft in 
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I 
FIGURE 9. Contour plot of vertical velocity in the plane x, = 0.5 for the 8T configuration at Pr = 15. 
Continuous lines represent positive velocities and dashed lines represent negative velocities. Symmetry 
has been assumed in the computation and in the representation of the velocity field. (a) Ru = 40000, 
(b) RU = 10000, (c) RU = 2000. 

the sense that the mean roll wavenumber can be varied continuously by stretching and 
squeezing the curved roll (figure 7). The numerical results presented in figure 7 validate, 
from a theoretical point of view, the experimental findings of Kolodner et al. (1986), 
that is that the soft-roll instability is similar to the skewed-varicose instability in that 
it is a quasi-steady transition from a configuration which is not stable at a particular 
Ra (e.g. 8T at Ra = 5000) to another configuration which is stable at that Ra. In fact 
we find a stable 8T solution at Ra = 4000 close to the skewed-varicose instability line. 
By increasing Ra, the stable solution reverts to a configuration which is inside the stable 
region (hatched area in figure 2) or on the boundary of the stable region, such as the 
soft roll at Ra = 5000 shown in figure 7. The solutions of figure 7 were obtained, as 
suggested by the experiments of Kolodner et al. (1986), by changing Ra in a quasi- 
steady way, starting from the soft-roll configuration at Ra = 5500. The wavenumber 
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FIGURE 10. Contour plot of vertical velocity in the plane x2 = 0.5 for the 6T configuration at 
Pr = 15. (Symmetry assumed.) (a) Ra = 27500, (b) Ra = 7000. 

I'------ I 
I .. .. .. . . .  ..... ..'......'... ................................... - ............................................ . ... 1; ....... ... ~..._.__........' 

FIGURE 11.  Contour plot of vertical velocity in the plane x2 = 0.5 for the 2L configuration at 
Pr = 15. (Symmetry assumed.) (a) Ra = 25000, (b) Ra = 20000. 
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FIGURE 12. Contour plot of vertical velocity in the plane x2 = 0.5 for the 3L configuration at 
Pr = 15. (Symmetry assumed.) (a)  Ra = 40000, (b) Ra = 2000. 

a of the central rolls increases with decreasing Ra, as shown by the soft-roll behaviour 
(figure 2). For Ra < 3000 the soft-roll structure becomes unstable and the 8T roll 
configuration is obtained. 

It should be noted that at Ra = 5000, in contrast to all the other results analysed in 
this work, a complete mixing amongst the different rolls is present in the soft-roll 
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FIGURE 13. Velocity vectors on the symmetry plane perpendicular to the transverse rolls (xl = 1.5) for 
the 8T configuration at Ra = 10000 and Pr = 15. The colour indicates the temperature of the fluid. 
(Symmetry assumed.) 

FIGURE 14. Pathlines for the quasi-two-dimensional base flow at Ra = 10000 and Pr = 15. 
(Symmetry assumed.) 
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FIGURE 15. Velocity vectors on the symmetry plane perpendicular to the main rolls (x, = 1.5) 
for the 8T configuration at Ru = 40000 and Pr = 15. (Symmetry assumed.) 

FIGURE 16. Velocity vectors, showing the cross-rolls on the plane containing the axis of the fourth 
main roll (x3 = 3.9) for the 8T configuration at Ra = 40000 and Pr = 15. (Symmetry assumed.) 
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configuration, as may be seen in the particle track shown in figure 8.f In fact, a particle 
released at a point very close to the lower wall is tracked in the bulk of the fluid and 
jumps from the curved roll to the straight transverse roll close to the symmetry plane. 

The numerical results obtained indicate that the soft-roll structure is a very stable 
and robust flow configuration for the Rayleigh-BCnard problem in bounded domains. 
In fact this structure has been shown in the present numerical study to be insensitive 
to numerical discretization errors and small perturbations of initial conditions (e.g. see 
the mesh sensitivity analysis in §5.2), just as it has been insensitive to the experimental 
uncertainty in the construction of the test section and in the evaluation and control of 
physical properties of fluid and walls in the experiments by Kolodner et al. (1986). 

An aspect which requires further explanation is the greater stability of the 3L 
configuration to the skewed-varicose structure (see figure 2). This is due to the 
straightening effect of the lateral walls, which also occurs at Pr = 15 (figure 3). 

5.4. Prandtl number = 15 
To correlate the present numerical results in a bounded domain with the experimental 
work of Kolodner et al. (1986) and to permit a comparison with the stability studies 
of Busse & Clever (1979), Pr = 15 (corresponding to ethanol at a temperature of 30 "C) 
was selected. From figure 3 (see also figure 3 of Busse & Clever 1979) it is evident that 
for Pr = 15, the cross-roll configuration and skewed-varicose instability may both be 
possible: the first one is associated with the lower wavenumbers, the second with the 
higher wavenumbers. 

5.4.1. Quasi-two-dimensional configurations 
First we focus our attention on the quasi-two-dimensional base flow configurations 

which occur for values of Ra and a corresponding to the hatched area of figure 3. As 
previously discussed for a bounded domain, only a finite multiplicity of solutions is 
possible, due to the discretization of the wavenumber. These are shown in table 2, 
where we present the results obtained for 8T, 6T, 3L and 2L configurations. 

In figures 9, 10, 11 and 12 contour plots of vertical velocity in the mid-horizontal 
plane (x, = 0.5) for the configurations 8T, 6T, 2L and 3L respectively are shown. The 
basic 8T pattern which can be seen is observed near the onset of motion (figure 9) 
remain stable up to Ra = 32000. This value seems to fit quite well with the theoretical 
prediction (figure 3). An example of the motion in the quasi-two-dimensional 
configuration is illustrated in figure 13, which shows the velocity vectors on the 
symmetry plane at Ra = 10000. The change in shape of the end rolls, which is 
particularly evident at small Ra (figure 9), results from the increase of the kinematic 
boundary-layer thickness near the lateral wall. As expected from the stability analysis 
for an infinite fluid layer (figure 3), the solution is two-dimensional in the bulk of the 
fluid domain, as is illustrated by the tracks of particles released near the symmetry 
plane (figure 14). Note that these tracks represent a minimum of twenty revolutions 

t The choice of the proper algorithm for integration of particle tracks has been a significant 
difficulty in order to obtain accurate trajectories. We have obtained the best results using a fourth- 
order Runge-Kutta algorithm for time integration and a local third-order interpolation for space 
representation of velocity. Two type of tests have been used to check the accuracy obtained: (i) 
Several very long tracks were generated (up to 1000000 time steps), and using the final positions as 
starting point reverse tracks were calculated so as to return to the initial point. The relative error 
evaluated as the non-dimensional distance between the first and the final point was less than 10-O. (ii) 
Closed path lines have been generated in planes with two-dimensional flows; after a large number of 
loops (20-25) the relative error was less than lo-'. 
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around the axis of the roll. The only three-dimensional motion which occurs is confined 
to a region close to the endwall where a spiralling movement is present, in the form 
discussed by Mallinson & de Vahl Davis (1977). Analogous behaviour occurs in all the 
other base configurations, up to the Ra value for the transition to the cross-roll 
structure (see table 2). 

5.4.2. Cross-roll 
The infinite stability analysis (figure 3) indicates that, depending on value of the 

wavenumber, the transition to the cross-roll structure for numerical solutions may 
occur in two different ways: direct for a < a,; or passing through the skewed-varicose 
instability region for a > a,, where a, z 2.8 is the wavenumber corresponding to the 
intersection of the cross-roll and skewed-varicose instability lines. 

In fact, for a < a, it is possible to have an Ra larger than the stability boundary 
predicted in the infinite domain (cross-roll line in figure 3) and retain the cross-roll 
structure (table 2). The presence of cross-roll structure is detected using the isovels of 
figures 9-12. In the bimodal structure the vorticity associated with the two orthogonal 
systems of rolls (base-rolls configuration and cross-rolls) is of the same order of 
magnitude. These structure are represented by filled symbols in figure 3. Very distorted 
flow structures are obtained (figures 9, 10 and 11). These numerical results, which are 
in qualitative agreement with the experimental findings of Kolodner et al. (1986), may 
be interpreted (as was mentioned by Busse & Whitehead 1971) as a gravitational 
instability of the upper and lower thermal boundary layers, which occurs because 
insufficient heat is transported by the base rolls to reduce the thickness of the thermal 
boundary layer sufficiently. The cross-roll wavenumber (presented in table 2) decreases 
with decreasing Ra and is in qualitative agreement with the predictions of a, made by 
Busse & Whitehead (1971) in the (a,a,)-plane, even though the continuous curves 
presented by Busse & Whitehead (1971) are reduced to points due to the discretization 
of ac as well as a in bounded domains. 

In figures 15 and 16 the velocity vectors for the 8T configuration at Ra = 40000 are 
shown on the symmetry plane perpendicular to the main rolls and in a plane containing 
the axis of the fourth main roll. The presence of six cross-rolls is clearly seen in figure 
16; this structure corresponds to a, = 6.28. The effect of convection on the temperature 
field is demonstrated by the dimension of the hot plume (red and orange vectors) in the 
upward flow region. 

The cross-roll instability for the base 6T configuration, shown in figure 10, grows at 
a value of Ra (15000 < Ra < 20000) which is smaller than that for the 8T 
configuration. This critical Ra is again in good agreement with the value predicted for 
an infinite domain for the transition to the cross-roll (figure 3). There are four cross- 
rolls in this case, corresponding to a wavenumber of 4.18. 

For the 2L configuration the cross-roll instability is encountered at a higher Rayleigh 
number (20000 < Ra < 25000) (figure 1 l), the number of cross-rolls is 14 and the two 
rolls close to the symmetry plane are smaller than the other twelve. The critical Ra for 
the 2L configuration is larger than for 6T even though they both have the same main 
wavenumber. This larger value can be explained by the stabilizing effect of the lateral 
walls to the cross transverse rolls (endwall effect). 

The behaviour of the ‘3L configuration is different from that of the other three, as 
may be seen in figure 12. The quasi-two-dimensional solution remains stable up to 
Ra = 40000, which is well above the skewed-varicose instability line from the infinite 
domain (figure 3). A similar result is also found for Pr = 0.71 for this configuration. 
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FIGURE 17. Tracks of particles released in three different regions of the first roll for the 8T 
configuration at Ra = 40000 and Pr = 15, showing the segmentation of the main roll due to the cross- 
rolls. (Symmetry assumed.) 

FIGURE 18. Tracks of particles released in 48 different regions for the 8T configuration at 
Ra = 40000 and Pr = 15 showing the inclination of the paths. 

Furthermore for Ra = 2000, which is on the lower branch of the cross-roll stability 
line, a flow structure with weak cross-rolls is obtained. This phenomenon is not 
observed for the other three configurations for Ra on the lower branch of the stability 
line of the cross-roll. 

An important aspect of the cross-roll structure, which is illustrated by the particles 
tracks shown in figure 17, is not only the complete absence of mixing among the rolls 
but also the segmentation of each main roll into subregions, in which the fluid particles 
remain. The three-dimensional nature of the flow and the cross-roll effect is evident 
from the inclination of the trajectories within the confined subregions. There is no mass 
transfer from one subregion to another even after hundreds of revolutions of the 
particle tracks. The tracks of a large number of particles released at the same time in 
all the 48 different regions determined by the intersection of the main and the cross- 
rolls are shown in figure 18. The qualitative overall behaviour of the particle tracks is 
in agreement with that found experimentally by Willis (figure 8 of Busse & Whitehead 
1971) in the case of bimodal convection. 
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FIGURE 19. Nu us. Ra for Pr = 15. The numerical uncertainty is estimated to be equal to 4% 
(see table 1 and figure 5). 

5.4.3. Soft roll 
In the same way as for a box filled with a fluid with Pr = 0.71 the skewed-varicose 

instability is detected in bounded domains filled with a fluid with Pr = 15 in the form 
of the soft roll structure. A peculiar characteristic at Pr = 15 is that the soft roll drives 
the transition to cross roll instability (figure 3) instead of to oscillatory instability, as 
in the case at Pr = 0.71. Therefore at increasing Ra the flow structure shows a 
transition from a standard soft roll solution to a more complex structure that exhibits 
the coexistence of soft- and cross-roll structures. The soft roll structure is found in the 
Ra range (12000 < Ra < 17000). In figure 4(a) the isovels at Ra = 12000 show the 
standard soft-roll configuration, which at Ra = 15 000 changes into a soft-cross-roll 
(SCR) configuration. A picture showing this configuration at Ra = 17000 may be seen 
in figure 4(b). For these configurations, owing to the presence of the cross-roll pattern, 
it is not possible to give a meaningful evaluation of the wavenumber a. Thus these 
results are not reported on the skewed-varicose instability line of figure 3. 

Therefore for the configurations considered, which are also all the possible 
configurations according to the stability diagrams in figure 3, good agreement is found 
with Busse & Clever (1979) and Kolodner et al. (1986) in the form of the instability at 
large Ra and in the value of the critical Ra for the transition to the cross-roll and soft- 
roll structures. Furthermore the cross-roll configurations seem to remain stable up to 
the onset of the unsteady oscillatory solution (Ra,,). On the other hand, owing to the 
presence of the lateral walls, we do not find the zig-zag instability in the lower region 
of figure 3. 

5.5. Heat transfer 
In the quasi-two-dimensional structure, the rate of heat transfer is a maximum for rolls 
of nearly square cross section (a x: 3.14), as observed by Kolodner et al. (1986). 
Therefore a solution with a different from 3.14 (e.g. a = 2.09 for 6T) gives a smaller 
rate of heat transfer as may be seen in figure 19 (Pr = 15). The lower curves correspond 
to the structures with wavenumber a = 2.09 (6T and 2L). The upper curve corresponds 
to the 3L configuration which has a = 3.14. 
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FIGURE 20. Nu vs. Ra for Pr = 0.71. 

Furthermore, as discussed by Busse & Whitehead (1971), the bimodal convection 
increases the rate of heat transfer over that of the base single mode. In fact, as shown 
by figure 19, there is a slight change in the slope of the curve of the 8T configuration 
with the growth of the cross-rolls. 

The phenomenon of the multiple Nu us. Ra curves, for the quasi-two-dimensional 
solutions is less clear for Pr = 0.71 (figure 20); this is due to the thinner stability region 
and lower Nu values (Nu < 2). As may be seen in figure 20, a lower value of Nu is 
obtained for the soft-roll configuration, in agreement with the experimental findings of 
Kolodner et af .  (1986). These multiplicities in the heat transfer curves may in some way 
explain the abnormal behaviour of Nu us. Ra found experimentally by Kennedy & Gani 
( 1 987). 

6. Conclusions 
The numerical simulation of the convection flows in closed boxes yields interesting 

information on the steady flow structures and the types of spatial instability occurring 
in the supercritical Ra regime (Ra, < Ra < Ra,,). In particular the present study 
validates the use of the infinite-domain analysis (Busse & Clever 1979; Clever & Busse 
1974) to predict the onset and types of instabilities, and confirms the experimental 
investigations in limited domains of Kolodner et al. (1986). 

The main conclusions are: 
(i) For low and intermediate Ra a multiplicity of steady solutions of quasi-two- 

dimensional type have been found. For these flow structures, different Nu us. Ra curves 
are obtained, where the largest values of Nu are associated with the wavenumbers 
closest to square rolls. Comparisons with the experiments of Kolodner et al. (1986) for 
two structures (8T, 10T) give good quantitative agreement (maximum error less than 
4 Yo). 

(ii) For large Ra two types of steady instabilities have been obtained: the cross-rolf 
(for Pr = 15) and the soft-roll (for Pr = 0.71 and 15). The computed values of critical 
Ra as a function of wavenumber CL for the transition to a cross-roll accurately fit the 
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theoretical curves shown by Kolodner et al. (1986) for infinite domain for the three 
possible structures with a < 2.8 (ST, 6T, 2L). For a > 2.8 (3L) we did not find the 
cross-roll instability for increasing Ra, in agreement with the results of Kolodner et al. 
(1986), and the quasi-two-dimensional structure seems to remain stable for Ra values 
above those required to cause the skewed-varicose instability in an infinite domain. For 
the 3L configuration we found a weak cross-roll in the lower branch of the theoretical 
stability line. The cross-roll leads to bimodal convection for increasing Ra. The 
numerical solutions show a fully three-dimensional flow field, in which mixing and 
mass flux are located within subregions bounded by each main and cross-roll. 
Although bimodal convection increases the rate of heat exchange, the change in slope 
of the Nu v .  Ra curve is barely perceptible. 

The soft-roll (or skewed-varicose) instability at low and intermediate Pr (Pr = 0.71 
and 15) is a steady mechanism for the transition from structures with one wavenumber 
to those with a different wavenumber corresponding to a solution which does not 
violate the stability constraints. For Pr = 0.71, the soft-roll instability leads to 
oscillatory solutions. The wavenumbers evaluated from these results follow quite well 
the skewed-varicose instability line in unlimited domains (Busse & Clever 1979). 
Therefore it seems that the soft-roll and the varicose instabilities are two expressions 
of the same steady instability. For Pr = 15 the soft-roll leads to the cross-roll structure 
and the flow appears as the combination of the two flow patterns. 

(iii) The lateral walls have a stabilizing effect on the zig-zag and varicose instability. 
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